Positron Composite Insulator Tester
With Instant GO/NOGO Graphical Capability

Model # 3782091C/50 & 3782091C/60

For Composite (Polymeric) Insulators

User Manual
Description and Operation Guide

Disclaimer Notice: Although Positron Inc. has made every effort to ensure the accuracy of the information contained herein, this document is subject to change.
Contents

1.0 General Information ... 3
1.1 Publication Information ... 3
1.2 About this Guide .. 4
1.3 How to use this Guide .. 4
1.4 List of References ... 4
2.0 Introduction to the Composite Insulator Testers ... 7
2.1 General ... 7
2.2 Composite Insulator Tester Model Numbers .. 9
3.0 Description of Composite (Polymeric) Insulator Testers Kit ... 11
3.1 The Composite Tester ... 11
3.2 Probe Charger ... 12
3.3 Insulator Tester Sled ... 12
3.4 Sled Adjustments .. 13
3.5 Placement of Probe on the Insulator Sled .. 13
3.6 Tablet/Laptop... 14
3.6.1 General ... 14
3.6.2 Separating the Tablet while in the Field ... 14
4.0 Windows-based Insulator Tester Software ... 17
4.1 Insulator Tester Software Description .. 17
4.2 The Bluetooth Serial Adaptor ... 18
4.3 Instant Graphical GO/NO-GO Reporting Capability ... 18
5.0 Using the Composite Insulator Tester & Software ... 21
5.1 BEFORE Testing Sessions ... 21
5.1.1 Select the Default Folder ... 21
5.1.2 Changing the Folder ... 22
5.1.3 Create a List of Insulator Identifications .. 22
5.1.4 Verifying Communication Before a Testing Session .. 24
5.1.5 Switching the Probe On .. 24
5.1.5.1 Power-On Self-Test (POST) of the Probe .. 25
5.1.6 Check Long-Range Bluetooth Serial Port Communication 26
5.1.7 Get Revision of the Probe .. 28
5.2 DURING Testing Sessions ... 29
5.2.1 Scanning an Insulator ... 31
5.2.1.1 Performing a "V" Scan ... 31
5.2.1.2 Performing a Vertical Scan .. 32
5.2.2 Downloading Data ... 33
5.3 AFTER Testing Sessions ... 37
5.3.1 Displaying Graphs ... 37
5.3.2 Searching the Database ... 37
5.4 Important General Notes ... 38
Contents

6.0 Interpreting Graphic Results ... 41
6.1 Understanding the Graphic References .. 41
6.2 Linear and Log Graphic Options ... 42
6.3 Composite Insulator Tester Results: Healthy Insulators 43
6.4 Composite Insulator Tester Results: Unhealthy Insulators 44
6.5 Comparing Historical Graphs ... 45

7.0 Specifications ... 47

8.0 Recommended Practices .. 49
8.1 Horizontal and V Strings Scan .. 49
8.2 Vertical Scan (Preferred method) ... 50
8.3 Vertical Scan (Alternate methods) ... 51

9.0 Important Information ... 53
9.1 Service and Support ... 53
9.2 Technical Customer Support .. 53
9.3 Customer Training .. 53
9.4 Repair Service .. 53
9.5 Warranty .. 54
9.6 Limitation of Liability ... 54
9.7 Disclaimer Notice .. 55
9.8 Cancellation and Rescheduling Charges .. 55
Chapter 1

General Information
1.0 General Information

1.1 Publication Information

© 2017 Positron Inc.

Positron Composite Insulator Testers, Description and Operation Guide
User Manual Part # 925W378209-07E

Publication date: October 2017

Published By
Positron Inc.
5101 Buchan Street, suite 220
Montréal, Québec, Canada
H4P 2R9

Trademarks
Positron Insulator Tester is a trademark of Positron Inc.

The Insulator Testers are manufactured by Positron Inc. in Montreal, Canada The Positron Insulator Testers is protected by US patents including “METHOD AND APPARATUS FOR THE VERIFICATION OF AN ELECTRICAL INSULATOR DEVICE BASED ON THE ANALYSIS OF THE ELECTRICAL FIELD ALONG THE INSULATOR”.

Product names, other than Positron’s, mentioned herein may be trademarks and/or registered trademarks of their respective companies.

Confidentiality Notice
The information contained in this document is the property of Positron Inc. Except as specifically authorized in writing by Positron Inc., the holder of this document:

1) shall keep all information contained herein confidential and shall protect same in whole or in part from the disclosure and dissemination to all third parties, and

2) shall use same for operating and maintenance purposes only.
1.2 About this Guide
This guide introduces and describes the operation of Positron’s Live Line High Voltage Tester used as a maintenance tool to test and report defects in Composite Insulators and for use as a safety tool to determine the condition of high-voltage insulators prior to beginning Live-Power Line work.

1.3 How to use this Guide
This guide was designed to describe the operational modes of the GO/NO-GO Composite Insulator Testers, Model #s 3782091C/50 (50Hz) and 3782091C/60(60Hz)

The reader is invited to use the digital (PDF) version of this document to allow searching by keywords. Select Edit, then Find from the pull-down menu.

1.4 List of References

Chapter 2

Overview
2.0 Introduction to the Composite Insulator Testers

2.1 General

The document describes the operation of Positron’s Composite Insulator Tester, enabling GO/NOGO decision-making for live-line testing of High Voltage Insulator performance:

Model # 3782091C/50: Composite Insulator Tester, 50Hz
Model # 3782091C/60: Composite Insulator Tester, 60Hz

Refer to Figure 1 on page 6 for a detailed drawing of the unit.

With the Composite Insulator Tester field Probe mounted onto a user-supplied hot-stick, the Tower Operator passes the Probe along the length of the composite insulator. Any conductive defect in an insulator will cause a change in the electric field surrounding the insulator. This perturbation of the electric field indicates a faulty insulator. The fault is detected, identified, measured by the Probe, and the data is downloaded to a database installed on the Tablet/PC for analysis. The graph displaying the E-Field of the insulator is clearly displayed on the Tablet/Laptop while in the field enabling GO/NOGO decision-making on-the-spot.

The skirts, or sheds, of Polymeric or Composite insulators are counted by the field Probe’s two integrated infrared detectors, referred to as IR1 and IR2 (see Figure 1), and the electric field of each insulator is recorded. Defective insulators are easily identified using the resulting data graphs that present the contour of the electric field along the length of the composite insulator. The field Probe contains a microprocessor-based recording system.

After a Composite insulator is scanned by the Tower Operator, the Ground Operator downloads the Probe’s data via a long range Bluetooth communication link to the Tablet/Laptop for immediate GO/NOGO analysis.

The data is stored in ASCII format in order to be compatible with any text editor, including Excel spreadsheet and Microsoft NOTEPAD, plus the ASCII data can be imported into existing customer databases.

NOTE
- Verify the Date and Time settings of the Tablet/Laptop
- It is important to disable the WIFI of the Tablet/Laptop to avoid long operating system updates while preparing for or performing a testing session.
Figure 1: Composite Insulator Tester (C-Tester) Model #s
3782091C/50 (50Hz) & 3782091C/60 (60Hz)
2.2 Composite Insulator Tester Model Numbers

For ordering information, contact Positron Customer Support:

North America: 1-888-577-5254, Option 9, Option 1.
International: 001-514-345-2220, Option 9, Option 1

Table 1: Testers and Accessories Model Numbers

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Model Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite GO/NO-GO Insulator tester, 60 Hz, standard 10” sled</td>
<td>3782091C/60</td>
</tr>
<tr>
<td>Composite GO/NO-GO Insulator tester, 50 Hz, standard 10” sled</td>
<td>3782091C/50</td>
</tr>
<tr>
<td>220Vac/120Vac cable charger replacement</td>
<td>378126</td>
</tr>
<tr>
<td>Rechargeable battery pack replacement for the Probe</td>
<td>378127</td>
</tr>
<tr>
<td>12Vdc auxiliary automotive power cable charger replacement</td>
<td>378128</td>
</tr>
<tr>
<td>RS232 Long-range Bluetooth adapter replacement</td>
<td>378325/3</td>
</tr>
<tr>
<td>Replacement standard sled kit for 378209/x</td>
<td>378610</td>
</tr>
<tr>
<td>50 Hz GO/NO-GO field Probe for Composite Insulators (no sled)</td>
<td>378608</td>
</tr>
<tr>
<td>60 Hz GO/NO-GO field Probe for Composite Insulators (no sled)</td>
<td>378612</td>
</tr>
<tr>
<td>Replacement cover plate for Probe power switch (Min Order 25 pcs)</td>
<td>378613</td>
</tr>
</tbody>
</table>
Chapter 3

Composite Insulator Tester Elements
3.0 Description of Composite (Polymeric) Insulator Testers Kit

3.1 The Composite Tester

The Composite Tester kit consists of:

- User manual
- A Quick Start Guide
- A rugged carrying case
- An adjustable Composite (Polymeric) Insulator Tester Sled
- A 12Vdc auxiliary automotive power cable charger
- A Composite (Polymeric) Insulator Tester Electric Field Probe
- Sled spacer set to accommodate various insulator sizes
- A long-range RS232 Bluetooth Serial Adaptor, pre-paired with the Tablet/Laptop
- A Tablet/Laptop with Insulator Tester Data Processing Software installed
- USB key loaded with Insulator Tester user manual
- Plug-in wall transformer: 120Vac/220Vac input, 12Vdc output (includes international wall-plug adaptors)
- Spare switch cover

The Operator Interface (see Figure 2) consists of:

- a push-button, and
- a Status LED

![Composite Insulator Tester](image)

Figure 2

In addition, an internal switch located near the RS232 connector is used to turn the power ON or OFF. See Figure 3.

![Power Switch Locations](image)

Figure 3

CAUTION

DO NOT TURN THE POWER SWITCH OFF BEFORE DOWNLOADING THE DATA.

When the power is turned off the accumulated data in the Probe is lost. Once the data has been downloaded, slide the switch away (left) from the RS232 connector to turn the unit off.
The Electric field Probe uses two infrared detectors to identify the direction of the scanning motion. Please refer to Figure 4. The two infrared detectors are identified as IR1 and IR2.

The RS232 connector port is used to recharge the Probe’s battery and to connect a Bluetooth dongle for data transfer.

3.2 Probe Charger

The Probe’s battery is recharged using a 120Vac/220Vac universal wall charger connected to a cable with a DB-9, RS232 female connector to connect to the Probe. A set of AC charger adaptors is provided to accommodate various country standards. For charging the Probe in the field, a 12Vdc auxiliary automotive charger cable terminated in a DB-9 connector is supplied to recharge the battery from a car or truck. The long range Bluetooth adaptor is powered by the Probe.

Both the AC power charger and the automotive DC charger are equipped with an LED status to report on the charging status. When first plugged in to charge, the LED will glow red. After 9 hours on charge, the LED will glow green, indicating that the charging time is completed.

The battery should be recharged overnight the day before a testing session. The battery charge will last one day with the power switch in the ON position.

The battery can be recharged with the power switch in the ON or OFF position, however the Probe will charge faster when switched off.

The data accumulated by the Probe must be transferred via Bluetooth to a Tablet/Laptop prior to switching the Probe off or the data will be lost.

3.3 Insulator Tester Sled

The Insulator Tester Probe mounts on a non-metallic sled. The sled permits the Insulator Tester Probe to slide along an insulator.

Together, the sled and Probe attach to a hot stick via the coupler mounted on the sled’s bracket. See Figure 5.
3.4 Sled Adjustments

The sled is equipped with adjustable skids to accommodate the different insulator sizes. A spacer kit is provided if the sled skids require adjustment. See Figure 6.

3.5 Placement of Probe on the Insulator Sled

The Composite Insulator Probe attaches to the companion sled via four key-hole openings on the insulator sled. Note that the Probe is skewed when attached to the sled to make the skirt thickness larger as seen by the IR detectors. See Figure 7.
3.6 **Tablet/Laptop**

3.6.1 **General**

A Tablet/Laptop is provided with the Probe. The Tablet/Laptop is Bluetooth-enabled and is shipped paired with the long range Bluetooth adapter of the Probe. Refer to Figure 8.

The Insulator Tester Data Processing Software is pre-installed on the Tablet/Laptop.

The Tablet/Laptop is used on-site for transfer of the data from the Probe after a scan of an insulator. The resulting graph can immediately be viewed enabling GO/NOGO decision making for immediate insulator replacement or establishing relative safety for live-line work. The transfer of data to the Tablet on-site also avoids the risk of data loss should the tester be switched off after testing.

CAUTION

The Tablet/Laptop must **not** be used by the Tower Operator for safety reasons. The Tablet/Laptop should be operated by a Ground Operator.

3.6.2 **Separating the Tablet while in the Field**

When using the Tablet/Laptop in the field, for ease of handling, it is best to separate the Tablet from its associated keyboard, as shown in Figure 9.

When attached, the keyboard is useful before a testing session when creating insulator lists and preparing for the field visit.

The Tablet has a generously sized touch screen. Large “**Touch Buttons**” are used to operate the Windows-based Positron Insulator Tester Software in the field.
While the Ground Operator is using the Tablet/Laptop on the ground, the Tower Operator tests the insulator. Once a scan of an insulator is completed, the Ground Operator immediately downloads the results via the Windows-based software to the Tablet and can see the profile of the E-field surrounding the tested composite (polymeric) insulator, thereby revealing its health, and determining immediately if a hazardous condition exists.

![Graph Example](image)

Example Only

After a remote (tower to ground) download, the Ground Operator can choose to **Accept** or **Reject** the data from the last insulator tested. Once data is accepted or rejected, the data in the Probe is flushed, allowing the crew to proceed to scan the next insulator or the same insulator again.

The intensity of the Tablet’s screen display is factory adjusted to its maximum setting. If this setting was changed by a user, it is important to adjust the intensity of the screen back to the maximum (Select 100% after selecting the small battery icon).

Additionally, polarized sunglasses may prevent easily seeing the display on the Tablet screen in Landscape mode (long edge of the Tablet screen is horizontal).

In this situation, rotate the Tablet 90° to switch to Portrait mode (short edge of the Tablet screen is horizontal). Otherwise, avoid the use of polarized sunglasses during use.
Chapter 4

Windows Based Software
4.0 Windows-based Insulator Tester Software

The Positron Insulator Tester Software was factory-installed on the Tablet/Laptop shipped with the Insulator Tester. Similarly, the long-range RS232 Bluetooth adapter has been factory-paired with the Tablet/Laptop shipped.

4.1 Insulator Tester Software Description

The Tablet/Laptop is Windows based and has the Positron Insulator Tester Software pre-installed. All data formats are backward and forward compatible. The long range Bluetooth Class I device enables on-the-spot remote downloading.

The Windows-based Insulator Tester Software is used:

A) **BEFORE** the testing session:
 - To create and store one or more lists of insulator's identifications used to identify in the field each insulator prior to generating a graph of the insulator E-field
 - To test the Bluetooth communication between the Tablet and the Probe
 - To set a different working folder

B) **DURING** the testing session
 - To remotely download the data scanned by the insulator tester
 - To identify last scanned insulator from the list
 - To display the graphic representation of the E-field along with the identification of the insulator
 - To make on-site GO/NOGO decisions based on the severity of the defects detected
 - To retain or discard the immediate results of a downloaded insulator test
 - To signal the Tower Operator
 - To put the probe in sleep mode after the testing of all insulators of a tower

C) **AFTER** the testing session
 - To use as a reference database to evaluate insulator degradation over time
 - To display the relative health of insulators using graph of the E-field along an insulator during live-line conditions
 - To use as a tool in the asset management associated with all manner of HV insulators, station hollow posts, bushings, lightning arrestors, etc, of both Porcelain and Composite (Polymeric) varieties

The Insulator Tester Software has been pre-installed on the Tablet/Laptop supplied with the unit. The icon for the Insulator Tester Software appears on the main-touch screen.
4.2 The Bluetooth Serial Adaptor

The long-range (100m) Bluetooth serial adaptor is powered by the Probe and has been paired with the Tablet/Laptop supplied with the Composite Insulator Tester.

4.3 Instant Graphical GO/NO-GO Reporting Capability

The Positron Composite Insulator Tester enables on-site a GO/NOGO decision making capability. A scan instantly downloaded to the Tablet/Laptop from the Probe is used to get a graphic representation of the E-field distribution of a composite (polymeric) insulator showing any floating or connected defects. A decision emergency replacement or establishing safety levels for live-line work can then be made.

During the scanning of an insulator, the Tower Operator manipulates the Insulator Tester with a hot stick, while the Ground Operator uses the Tablet/Laptop. Once the scan is done, the Ground Operator can immediately download the data to get the graphic representation of the distribution of the E-field along the composite (polymeric) insulator.

Once the Ground Operator has downloaded the data from the Probe and has viewed the graph of the insulator’s E-field, the Ground Operator can choose to Accept or Reject the scan using the Windows-based Insulator Tester software interface installed on the Tablet/Laptop. In either case, the data in the Probe gathered during the scan will be deleted after download to the Tablet/Laptop.
Chapter 5

Using the Composite Insulator Tester & Software
5.0 Using the Composite Insulator Tester & Software

The Composite Insulator Tester and Tablet/Laptop are used together in the field. The Ground Operator controls the Tablet/Laptop running the Windows-based Insulator Software while the Tower Operator manipulates the Composite Insulator Tester and scans the insulator.

After a scan of a composite (polymeric) insulator, the Ground Operator can instantly download the resulting data obtained by the Tower Operator. Once downloaded, the Ground Operator can view the E-field profile of the scanned insulator on the screen of the Tablet/Laptop and the relative health of the insulator can be assessed while in the field.

Using the Tablet/Laptop, the Ground Operator can choose to Accept or Reject the scan. In both cases, once a choice has been made by the Ground Operator the data in the Probe is erased. If the choice is made to Accept the scan, the data is stored on the Tablet/Laptop.

5.1 BEFORE Testing Sessions

If required, adjust the date and the time of the tablet. Begin by double-clicking the Insulator Tester icon. Ensure that the Bluetooth feature is enabled on the Tablet/Laptop.

5.1.1 Select the Default Folder

First, set the Default folder where the data will be stored. From the screen, select Set Default Folder. A dialogue box will be returned showing you the default file location.
5.1.2 Changing the Folder

You can change the default location and folder name by selecting **Change Folder**. The **Change Folder** selection and Windows OS will guide you through the steps. Be sure to select **Accept** at the end of the process.

5.1.3 Create a List of Insulator Identifications

Create a listing of all insulators to be tested during an upcoming Testing session. This list will be used during a testing session to identify each insulator. This is best done with the Tablet engaged with the keyboard for ease of typing. Select **Edit Insulator Identifications**.
A dialogue window will open so you can open the Default.id file. This will be used to enter the information identifying the insulators to be scanned.

The Identification List Editor will open. Edit a field by clicking into it and move to the next field using the TAB key on your keyboard. The ENTER key will bring you to the field immediately beneath.

With the list completed, select Save and Close.

Note that number shown in the upper-left corner of the Identification List Editor corresponds to the number of entries there are in the list.

Enter any user defined code in the Code field.

This will open the Save this Identification List dialogue box.

Enter a name for your list, and click Save. The list is saved with a file suffix of “.ID”.

Using the Composite Insulator Tester & Software
5.1.4 Verifying Communication Before a Testing Session

Prior to going out in the field to use the Composite Insulator Tester, testing the long-range Bluetooth communication between the Probe and the Tablet/Laptop is advised. This can only be done with the Probe activated. After communication has been established, the Probe and long range Bluetooth adaptor can be switched off again before going out into the field.

5.1.5 Switching the Probe On

To activate the Probe, remove the Power Switch Cover and move the power switch to the right, toward the DB-9 connector, as shown in Figure 10. The Probe will first enter the Power-On Self-Test (POST). See 5.1.5.1 for details.

Ensure the slide switch on the Bluetooth adapter is in the DCE position. Insert the long range Bluetooth Serial adapter into the DB-9 Serial port of the Insulator Tester Probe. The long range Bluetooth Serial adapter is powered by the battery of the Probe.

![Location of Power Switch Cover](image1)

![Cover and remove](image2)

![Slide the Power Switch to the right to the “ON” position, toward the DB-9 connector](image3)

![Ensure the slide switch on the Bluetooth adapter is in the DCE position.](image4)

Figure 10
5.1.5.1 Power-On Self-Test (POST) of the Probe

Upon switching the Probe on, the POST process commences and the infrared detectors are verified.

The power-up sequence for the 3782091C/x Composite Insulator Tester is described below:

1. Apply power by sliding the switch located on the side of the Probe, underneath the Switch Cover, toward the RS232 connector
2. The LED will flash Amber once
3. The LED will then flash Green four times
4. After which, the LED will flash Amber 10 times and shut off during which the Infrared beams and sensors are tested (IR1, IR2).
5. If the Red LED begins flashing, then the Probe’s infrared sensors are being obstructed. Ensure that there are no obstructions and that the lenses are not fouled. The Red LED will stop flashing the moment the infrared beams are unobstructed.

To fully check the 2 infrared beams (IR1, IR2), make a hand-pass through the beams, inside the sled near the Probe at the beginning of the long tone.

Once the infrared beams have been broken, or after flashing 10 times, the LED and the tone will turn off.

Once the Probe has been activated and the POST procedure is finished, communications between the Probe and the Windows-based software on the Tablet/Laptop must be tested.
5.1.6 Check Long-Range Bluetooth Serial Port Communication

Select the Check Serial Port Communication button to verify long range Bluetooth connectivity between the Tablet/Laptop and the Probe prior to going into the field.

The Check Bluetooth Serial Port dialogue screen will appear. Select the COM Port used by the Tablet/Laptop to communicate with the Bluetooth adapter.

Select the RED ON-OFF button. The button will turn YELLOW and “Wait” will appear until Bluetooth communication is established, and then it will turn GREEN.
If the button does not turn **YELLOW** and read "Wait", but turns **GREEN** immediately, try another port. If the button flashes **YELLOW** before **GREEN**, you have connected to the correct COM port. If the incorrect COM Port has been selected, an error message may be returned. If so, change the COM Port and retry.

These steps verify communication with the **Tablet** and the Probe’s long range **Bluetooth RS232 Adapter**.

Take note of the COM port associated with the long range Bluetooth Adapter. This COM port will need to be reconnected once the unit is taken to the field for a scanning session.

It is important not to transport the Probe to the testing location with the long range Bluetooth Adapter inserted in the DB9 connector. This is to avoid possible physical damage during transport.

The buttons in the Insulator Tester Software turn **GREEN** once each software function receives an acknowledgment from the Probe. If a button in the Insulator Tester Software turns **RED** after it has been **GREEN**, the Probe may be in sleep mode, and the Push Button of the Probe must be pressed to bring the unit into **Awake Mode**.
5.1.7 Get Revision of the Probe

Select Get Revision of the Probe to receive the Probe’s internal Firmware Revision level. Normally, this function is used is used by Positron Technical Support when troubleshooting the Probe. In this instance, the function is used as a confirmation that the Tablet/Laptop can communicate a command to the Probe and that the Probe will respond via the long range Bluetooth communication through the associated COM Port.

Once you have selected Get Revision of the Probe, communication between the Tablet and Probe is established. Ensure that the Probe is in Awake Mode by pressing the push button of the Insulator Tester Probe. See Figure 11. If required, select Get Revision of the Probe after the Probe is awakened.

This step verifies that the Tablet/Laptop can communicate with the Probe. Once Bluetooth connectivity and functional communication are verified, the Probe can be switched off. The Probe will be switched on again in the field when scanning is to begin.

![Figure 11](image)

NOTE

Before going out into the field for an insulator scanning session, ensure the Positron Insulator Tester and Tablet/Laptop are fully charged. The batteries of the Tablet/Laptop are best maintained for longer life by recharging before the battery charge depletes below 50%.
5.2 DURING Testing Sessions

It is important to disable the WIFI of the Tablet/Laptop to avoid long operating system updates while performing a testing session.

Equipped with the Tablet separated from the keyboard, the Ground Operator launches the Insulator Tester Software. Optionally, the camera of the Tablet/Laptop can be used to take a picture of the tested tower.

To activate the Probe, remove the Power Switch Cover and move the power switch to the right, toward the DB-9 connector, as shown in Figure 12. The Probe will first enter the Power-On Self-Test (POST) as described in 5.1.5.1.

Ensure the slide switch on the Bluetooth adapter is in the DCE position. Insert the long range Bluetooth Serial adapter into the DB-9 Serial port of the Insulator Tester Probe. The long range Bluetooth Serial adapter is powered by the battery of the Probe.
Connect to the Probe prior to Tower Operator ascension. Ensuring that the Probe has been switched ON, select **Connect to Probe** and reconnect to the same COM port noted in the communications check performed prior to going out in the field for a scanning session.

Select the appropriate COM Port, and Select **ON**.

It is connect the Bluetooth in the field prior to Tower Operator ascension. Use the **Send Alert to Probe** button in the field to check the communication link. The Probe will respond with an annunciating tone.

With communication confirmed, the Tower Operator can now ascend. Once in position, the Tower Operator should press the Probe’s button to ensure it is in **Awake Mode**. If not, the Ground Operator will be unable to signal the Probe. Ensure that the LED of the Probe is flashing GREEN.
5.2.1 Scanning an Insulator

5.2.1.1 Performing a “V” Scan

Once the Probe is securely fastened to the sled and the hot stick is attached, follow this procedure, per Figure 14:

1. Following the instructions of the Ground Operator, if the LED is not flashing, press the Push-button on the Probe (See Figure 13) and place the Probe as close as possible to the low voltage end of the composite (polymeric) insulator.

2. Slide the tester along the insulator toward the high voltage end of the string. A tone will sound each time a reading is taken at each insulator skirt (shed).

3. Remove the Probe from the insulator and wait for instructions from the Ground Operator.
 - The Ground Operator will Download the scanned data to the Tablet/Laptop PC to view the resulting graph and will Accept or Reject the scan. In either case, the data is wiped from the Probe leaving the Probe ready for the next scan.
 - The Ground Operator selects Send Alert to Probe and the annunciator tone attracts the attention of the Tower Operator so the Ground Operator communicates the next step to the Tower Operator.
 - This process is repeated for each insulator.

![Figure 13](image13)

![Figure 14](image14)
5.2.1.2 Performing a Vertical Scan

A single scan is performed to verify the Composite (Polymeric) insulator.

1. Following the instructions of the Ground Operator, if the LED is not flashing, press the Push-button on the Probe (See Figure 15) and place the Probe against the insulator nearest possible to the low voltage end of the Composite (Polymeric) insulator, per Figure 16.

![Figure 15: Composite Insulator Tester](image)

2. Slide the Probe toward the high voltage end of the insulator. A tone will sound each time a reading is taken at each insulator skirt (shed). The Probe may be moved at a speed from 1 skirt (shed) per second up to 10 skirts (sheds) per second.

3. Remove the Probe from the insulator and wait for instructions from the Ground Operator.

![Performing a Vertical Scan](image)

NOTE

It is important to avoid moving the probe backward at any time during the execution of a scan of the Composite (polymeric) insulators. The adjustable skids can be removed to accommodate large Composite insulators. See paragraph 3.4

![Photo of Composite Insulator Tester](image)
5.2.2 Downloading Data

The results of the scans downloaded immediately after the scan and viewed on the Tablet/Laptop PC.

During the Download process, if a system message is returned stating “No data is available from the Probe” this indicates that the Insulator Tester Software is in communication with the Probe, but that there is no data in the Probe to download. The Download button will still turn GREEN, indicating that the Windows-based Insulator Tester Software is able to communicate with the Probe, but that no data was resident.

A successful Download will be confirmed by a system message stating Data received successfully and the TAG button will turn GREEN.

The Download from the Probe dialog box will open, showing the graph of the E-Field of the scanned insulator. From this screen, you can associate the insulator scan with an ID created earlier in the Insulator Identification List.
Select **TAG** and the **Select Insulator Identification List** will open.

From the **Select Insulator Identification List** you can select and open the Insulator ID List created before the testing session.

Select the Insulator just scanned from the list created earlier, and select **TAG**.

Select **Graphic** to see one or more graphs of the E-Field from scans of the last tested insulator. If more than one scan was done on the last tested insulator, click or touch the graphic to see the next related graphic.
An instant determination can be made by the Ground Operator whether to **Reject** or **Accept** the last insulator scan.

If the scan is rejected, a system message will be returned asking if you are sure you want to delete the downloaded data. If rejected, the data is erased from the Probe, ready to re-scan the insulator.
In the example shown below, the data was accepted by the Ground Operator. Once accepted, the next insulator may be scanned. The Ground Operator can attract the attention of the Tower Operator by selecting **Send Alert to Probe** and issue the instructions for another insulator scan.

If this was the **last** planned scan, the Ground Operator may elect to select:

A) Select **Turn OFF Probe** to put the Probe into **sleep mode**. (The Probe can be awakened by pressing the Push Button of the Probe.)

B) Optionally, **Close** button to close the current window (The Bluetooth will disconnect to save power).

If during the process any of the software interface buttons turns RED when selected, it may mean that the Probe has gone into sleep mode. The Tower Operator must be signaled to wake the Probe by pressing the Probe’s Push Button.
5.3 **AFTER Testing Sessions**

5.3.1 **Displaying Graphs**

At any time before, during or after a testing session, press the “Graphics” button on the Tablet screen to display the graphs from the data stored in the Tablet/Laptop. Refer to Chapter 6 for interpretation of the graphs.

5.3.2 **Searching the Database**

Search a database for a given insulator in the database to evaluate its degradation over time. See Section 6.6 for a description of superimposed graph comparison.

To **search** for an insulator:

- Browse and select the “Search” button from the menu of the Insulator Tester Software,
- Select the folder (and optionally all its subfolders)
- then choose an insulator
- display the chosen insulator
- select the next insulator
- display its graphic and reduce its opacity to superimpose many graphics
- the degradation over time becomes evident
5.4 Important General Notes

- Always use the same Bluetooth adapter with its paired Tablet/Laptop.
- If the Probe has not been used for more than six (6) months, recharge its Ni-Cad battery before turning ON the power of the Probe.
- The Probe’s battery should be recharged overnight (9 hours minimum) before each day of testing. If the power switch remains ON, the battery will discharge completely after two days.
- Recharge the battery of the Probe and the Tablet/Laptop before a day of testing.
- Switch the power OFF when the Probe is left unused. To switch the Probe OFF, remove the cover and move the slide switch away from the RS232 connector.
- To verify that the power is ON, press the push-button; the LED should flash, then press the push-button again to turn the light OFF.
- Do not use the Probe and the Tablet/Laptop in rain or snow.
- To recharge the battery, remove the RS232 cover (3” x 1”), plug the charger cable to the Probe and plug the universal wall transformer to a 120/220 Vac source, 50 or 60 Hz.
- If the battery is completely discharged (No light on power-up), switch the Probe OFF while the battery is recharging. Under normal circumstances, it is not necessary to turn the Probe OFF during a recharge.

Switching the Probe OFF will erase all data in the Probe.

The equipment covered in this manual should be used and serviced only by competent and trained personnel familiar with and following good work safety practices. This equipment is intended solely for the use by such trained personnel. This manual is not intended as a substitute for adequate training and experience. Appropriate safety procedures must be followed at all times in the use of this equipment.

NOTE

This equipment will not detect any non-conductive defects including non-conducting mechanical defects.

WARNING
Chapter 6

Interpreting Graphic Results
6.0 Interpreting Graphic Results

6.1 Understanding the Graphic References

The data transfer software on the Tablet/Laptop creates ASCII files. MS-Excel or any text editor, such as Microsoft NOTEPAD, can import these files. The tagging of an insulator creates, an ASCII file ".LOG", which contains time tag and insulator identification pairs. The associated data file ".PRN" contains the same time tag which is used to identify the data.

See Figure 17 for a description of the fields shown on the graphs.

A) **Log/Lin** indicates the scaling of the graphic results of the scans, and is selectable.

B) Shows the date of scan and the type of insulator tester (CTester = Composite Tester)

C) Detailed information of the scanned insulator taken from the user’s insulator list.

D) “t = 497” indicates the number of seconds since midnight.

E) This pull-down menu allows the selection of an insulator identification:

i. 7010 identifies the particular power transmission line being scanned

ii. 0038 identifies a particular tower associated with the power transmission line being scanned

iii. D indicates the power phase associated with the last power transmission line being scanned

iv. 1 indicates that it is the 1st insulator for the given phase

v. The last two characters can be any alphanumeric characters chosen by the user. These last 2 characters are not used by the software. The other alphanumeric characters are used for the “Search for a given insulator” function.

Figure 17: Example of a Graph of a Composite (polymeric) Insulator Scan shown using LOG Scale
6.2 Linear and Log Graphic Options

The “Linear” display mode is used to display the electric field readings from the Probe on a linear scale. It is normally used for lower voltage applications.

The “Log” display mode is used to amplify the small variations in the lower portion of the curve for longer composite (polymeric) insulator.

Figure 18: Example of scan of a bad insulator shown on Linear Scale

Figure 19: Example of scan of the same insulator shown on Log Scale, focusing on the magnified variations on the lower portion of the curve.
6.3 Composite Insulator Tester Results: Healthy Insulators

The graphs below show the insulator skirt (shed) on the horizontal axis, with “1” being the insulator skirt nearest the tower side. The vertical axis represents the strength of the electrical field in kilovolts/meter, expressed as “E-field (kV/m)”. The E-field is measured longitudinally at each skirt along the energized composite (polymeric) insulator by the Probe.

The smoothness of the curves of the E-field characterizes a healthy insulator.
6.4 Composite Insulator Tester Results: Unhealthy Insulators

Disturbances in the E-field surrounding the composite (polymeric) insulator indicate defects. The severity of the deviation in the curve of the E-field reflects the severity of the defect.

Figure 21: Graphic representations of the E-Field of two *Unhealthy* Composite (polymeric) Insulators shown in the Log scale
6.5 Comparing Historical Graphs

Graphs can be superimposed for comparison. Refer to Figure 23. Place one graph over the other, and reduce the opaqueness down from 100 until one graph is visible through the other.

Figure 22
Chapter 7

Specifications
7.0 **Specifications**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum skirts per insulator</td>
<td>150 skirts</td>
</tr>
<tr>
<td>Minimum skirts per insulator</td>
<td>5 skirts (sheds)</td>
</tr>
<tr>
<td>Scanning speed</td>
<td>From 1 to 10 skirts/sec</td>
</tr>
<tr>
<td>Maximum corona protection</td>
<td>1 million Volts</td>
</tr>
<tr>
<td>Minimum battery recharging time</td>
<td>10 hours (one night)</td>
</tr>
<tr>
<td>Cumulative use between charges</td>
<td>12 hours</td>
</tr>
<tr>
<td>Maximum period between battery charges</td>
<td>1 day</td>
</tr>
<tr>
<td>Operating temperature range:</td>
<td></td>
</tr>
<tr>
<td>• Probe</td>
<td>-40°F to 122°F (-40°C to 50°C)</td>
</tr>
<tr>
<td>• Bluetooth Adapter</td>
<td>-4°F to 167°F (-20°C to 75°C)</td>
</tr>
<tr>
<td>Composite Tester Dimensions</td>
<td></td>
</tr>
<tr>
<td>Skirt (shed) diameter</td>
<td>12” x 11” x 6” (30.5 cm x 28 cm x 15 cm)</td>
</tr>
<tr>
<td></td>
<td>4.3” to 6.7” (10.9 cm to 17 cm)</td>
</tr>
<tr>
<td>Weight</td>
<td>2.4 lbs. (1 kg)</td>
</tr>
<tr>
<td>Humidity</td>
<td>90%</td>
</tr>
<tr>
<td>Factory calibration (User recalibration is not required)</td>
<td>500 raw units = 100 kV/m longitudinally</td>
</tr>
</tbody>
</table>

NOTE To be used on AC lines only.
Chapter 8

Recommended Practices
8.0 Recommended Practices

8.1 Horizontal and V Strings Scan

Performing a “V” Scan

Place the Probe close to the low voltage end of the insulator and slide the Probe along the insulator, moving the Probe from 1 skirt (shed) per second up to 10 skirts (sheds) per second, toward the high-voltage end and withdraw the Probe.

1. To facilitate the manipulation, the hot stick should be almost parallel to the string of insulators, per Figure 23.

2. The angle should be adjusted as shown on the above figure.

3. Apply constant pressure downward to keep the sled against the insulator at all times.
8.2 Vertical Scan (Preferred method)

1. To facilitate the manipulation, the hot stick should be almost vertical, per Figure 24.

2. Apply pressure toward the insulator to keep the sled against the insulators at all times.
8.3 Vertical Scan (Alternate methods)

Vertical Scan (Alternate)

Place the Probe close to the low voltage end of the insulator and slide the Probe along the insulator, moving the Probe from 1 skirt (shed) per second up to 10 skirts (sheds) per second, toward the high-voltage end and withdraw the Probe.

Figure 25
Chapter 9

Important Information
9.0 Important Information

9.1 Service and Support

Positron Contact Information

General information
Positron Inc.
591 Buchan Street
Montreal, Québec, Canada
H4P 2R9
US and Canada: 1-888-577-5254
International: 1-514-345-2214
Fax: 1-514-345-2271
E-mail: info@positronpower.com
Web site: www.positronpower.com

Repairs
US and Canada: 1-888-577-5254, Option 1
International: 001-514-345-2220, Option 1

9.2 Technical Customer Support

Positron is committed to providing excellent ongoing technical support to its customers. A team of specialists is always available for telephone consultations, or for on-site visits to assist in maintenance and troubleshooting.

For pricing information or assistance in the planning, configuration, use and interpretation of data of the equipment, contact Technical Customer Support (TCS) at 1-888-577-5254, Option 1, Option 3 (US and Canada) or +1-514-345-2220 Option 1, Option 3 (International).

9.3 Customer Training

Full customer training courses on the operation and results interpretation of Positron Insulator Testers are available. For information, contact Positron.

9.4 Repair Service

All warranty repairs are performed at no cost. Positron reserves the right to repair or replace any equipment that has been found to be defective.

For information about out-of-warranty repairs, contact Positron’s Repair department at 1-888-577-5254 (US and Canada) or 001-514-345-2220 (International).

Due to the varied nature of repairs, no specific turnaround can be guaranteed, but average turnaround time is two weeks from date of receipt. In emergency situations, special arrangements can be made. All repaired items are warranted for a period of 180 days.

Before returning any items to Positron for repair, warranty repair or replacement, call the Repair Department to obtain a Return Material Authorization (RMA) number. Parts returned without RMA numbers cannot be accepted. The RMA number must always be clearly marked on all boxes and crates and on all shipping documents. Bulk repairs (more than five items) will require additional processing time, so please take this into consideration when requesting an RMA.
To accelerate the repair process, whenever possible, include a report detailing the reason for return with the unit(s). Also, please include the name and phone number of a contact person should our Repair department need further information.

When packing items being returned for repair, please ensure they are properly packed and shipped in their carrying cases to avoid further damage.

9.5 Warranty

Subject to the provisions of this paragraph, Positron warrants that the equipment shall perform in accordance with Positron's specifications. The warranty remains valid for two (2) years from the date of shipment. The warranty fully covers workmanship, materials and labor. Positron shall, at its sole discretion, repair or replace the problem unit.

During the warranty period, freight costs to ship defective equipment to Positron are borne by the Customer, while the return of replaced or repaired equipment is at Positron's expense.

9.6 Limitation of Liability

Subject to anything to the contrary contained herein, Positron's sole obligation and liability and the customer's sole remedy for Positron's negligence, breach of warranty, breach of contract or for any other liability in any way connected with or arising out of, the equipment or any services performed by Positron shall be as follows:

- In all situations involving performance or non-performance of the equipment or any component thereof, the customer's sole remedy shall be, at Positron's option, the repair or replacement of the equipment or said component.

- For any other claim in any other way related to the subject matter of any order under, the customer shall be entitled to recover actual and direct damages; provided that Positron's liability for damages for any cause whatsoever, and regardless of the form of the action, whether in contract or in tort (including negligence), shall be limited to the value of the order.

Positron shall not be obligated to repair or replace any item of the equipment which has been repaired by others, abused or improperly handled, improperly stored, altered or used with third party material or equipment, which material, or equipment may be defective, of poor quality or incompatible with the equipment supplied by Positron, and Positron shall not be obligated to repair or replace any component of the equipment which has not been installed according to Positron specifications.

IN NO EVENT SHALL POSITRON BE LIABLE FOR ANY INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY OR SIMILAR OR ADDITIONAL DAMAGES INCURRED OR SUFFERED INCLUDING LOSS OF PROFITS, LOSS OF REVENUES, LOSS OF DATA, LOSS OF BUSINESS INFORMATION, LOSS OF GOODWILL, LOSS OF LIFE, STAFF INJURY, LOSS OF EXPECTED SAVINGS OR BUSINESS INTERRUPTION ARISING OUT OF OR IN CONNECTION WITH THE EQUIPMENT, A PURCHASE ORDER SUPPLIES, MAINTENANCE SERVICES OR OTHER SERVICES FURNISHED HEREUNDER, EVEN IF POSITRON HAS BEEN ADVISED OR IS AWARE OF THE POSSIBILITY OF SUCH DAMAGES.

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, POSITRON DISCLAIMS ANY FURTHER CONDITIONS, REPRESENTATIONS OR WARRANTIES, WHETHER WRITTEN OR ORAL, EXPRESSED OR IMPLIED, INCLUDING THE CONDITIONS AND WARRANTIES OF MERCHANTABILITY, MERCHANTABLE QUALITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, PERFORMANCE AND THOSE ARISING FROM STATUTE, TO THE EXTENT PERMITTED BY
Important Information

LAW. POSITRON DOES NOT WARRANT THAT THE SYSTEM WILL OPERATE WITHOUT INTERRUPTION OR THAT IT WILL BE ERROR FREE.

9.7 Disclaimer Notice

The equipment covered in this manual should be used and serviced only by competent and trained personnel familiar with and following good work safety practices. This equipment is intended solely for the use by such trained personnel and is not intended as a substitute for adequate training and experience. Appropriate safety procedures must be followed at all times in the use of this equipment.

The descriptive information contained in this manual is not intended to and does not cover all details, usages, or methods of use of this equipment, and such information is not intended to discuss all situations or contingencies which might be encountered with respect to the operation, maintenance or use of the equipment. This information is provided for purposes of description only and is not to be relied upon or utilized by any purchaser as instructions, warranties, specifications or use certifications. Although Positron Inc. has made every effort to ensure the accuracy of the information contained herein, this document is subject to change without notice due to ongoing product development. Any additional information which may be required by any purchaser regarding the use, maintenance, installation or operation of this equipment should be referred to Positron Inc.

9.8 Cancellation and Rescheduling Charges

Should the customer cancel, prior to shipment, any part of an order, the customer agrees to pay to Positron cancellation charges, not as a penalty, which shall total all expenses, including labor expenses, incurred by Positron prior to said cancellation. Modified equipment that has been specially developed for the customer's specific applications shall not be subject to cancellation. Cancellation or rescheduling is not permissible after shipment of the System.
Positron Insulator Tester Products

Personnel Safety and Maintenance Test Equipment

Automated Electric Field Assessment Along Energized Insulators

- Instantaneous audible and visual **DANGER** alarm
- Safe, easy to use and lightweight (1.6 Kg)
- No electrical contact with insulators
- Early detection and recording of faults (Stores up to 15,000 readings)
- Works on energized insulators up to 1,000,000 Volts
- **SAFETY** and maintenance tool
- Used for all Porcelain, Composite and Glass Insulators
- Provides contamination assessment
- Reliable, proven, deployed **WORLDWIDE**

Protect the Safety of Personnel Working in Close Proximity to Live High Voltage Insulators
Positron’s Suite of Insulator Products
Fast & Easy to Use

Simply slide the tester sled along the insulator (string).

Positron’s Insulators Testers and software enhances worker safety with an Instant Graphical Download of the insulator’s surrounding E-field for immediate on-site viewing, providing immediate warning for DANGEROUS conditions.

Porcelain Tester

The Porcelain Tester is used for Porcelain and Glass insulators.

![Porcelain Tester Image](image)

Composite Tester

The Composite Tester is used to detect floating or connected defects for Composite (or Polymeric) insulators.

![Composite Tester Image](image)

Universal Tester

The Universal Tester is ideal for substation environments (conical shaped bushings, station hollow posts, composite (polymeric) posts, lightning arresters, cable terminations, etc.).

![Universal Tester Image](image)